Нормы эхокардиографии и расшифровка результатов

В протоколе исследования сердца присутствуют сокращения, которые понятны только докторам. Человек, не имеющий медицинское образование, вряд ли сможет расшифровать протокол ультразвукового обследования сердца. Но, отталкиваясь от нормативов, можно вполне сделать самостоятельный вывод.

Для миоглобина и гемоглобина характерны разные кривые связывания кислорода

Особые свойства молекулы гемоглобина, которые делают его столь эффективным переносчиком кислорода в крови, легче всего уяснить из сравнения миоглобина и гемоглобина в отношении их сродства к кислороду. На рис. 8-16 показаны кривые насыщения кислородом для гемоглобина и миоглобина, характеризующие степень насыщения этих белков кислородом (т.е. отношение числа участков молекулы, связывающих кислород, к общему числу участков, способных к такому связыванию) в зависимости от парциального давления газообразного кислорода, находящегося в равновесии с раствором белка.

Рис. 8-15. Фоток рафия нормальных эритроцитов человека, полученная при помощи сканирующего электронного микроскопа.

Прежде всего из графика ясно, что миоглобин имеет очень высокое сродство к кислороду: при парциальном давлении кислорода, равном всего лишь 1-2 мм рт. ст., он уже на 50% насыщен кислородом. Кроме того, мы видим, что кривая насыщения миоглобина кислородом имеет вид простой гиперболы, как и следует ожидать из закона действующих масс применительно к равновесной реакции:

При парциальном давлении кислорода, равном 20 мм рт. ст., миоглобин оказывается насыщенным кислородом более чем на 95%. В отличие от миоглобина гемоглобин характеризуется значительно более низким сродством к кислороду; кроме того, кривая насыщения гемоглобина кислородом имеет сигмоидную, т.е. S-образную, форму (рис. 8-16). Это означает, что при связывании первой молекулы кислорода (нижняя часть S-образной кривой, соответствующая парциальным давлениям кислорода ниже 10 мм рт. ст.), гемоглобин имеет очень низкое сродство к кислороду, тогда как при связывании следующих молекул кислорода его сродство к ним становится намного выше, о чем свидетельствует крутая часть -образной кривой.

Общее описание

Эхокардиография (ЭхоКГ) — это метод исследования морфологических и функциональных изменений сердца и его клапанного аппарата при помощи ультразвука.

Эхокардиографический метод исследования позволяет:

  • Количественно и качественно оценить функциональное состояние ЛЖ и ПЖ.
  • Оценить региональную сократимость ЛЖ (например, у больных ИБС).
  • Оценить ММЛЖ и выявить ультразвуковые признаки симметричной и асимметричной гипертрофии и дилатации желудочков и предсердий.
  • Оценить состояние клапанного аппарата (стеноз, недостаточность, пролапс клапана, наличие вегетаций на створках клапана и т.д.).
  • Оценить уровень давления в ЛА и выявить признаки легочной гипертензии.
  • Выявить морфологические изменения перикарда и наличие жидкости в полости перикарда.
  • Выявить внутрисердечные образования (тромбы, опухоли, дополнительные хорды и т.д.).
  • Оценить морфологические и функциональные изменения магистральных и периферических артерий и вен.

Показания к эхокардиографии:

  • подозрение на наличие приобретенных или врожденных пороков сердца;
  • аускультация сердечных шумов;
  • лихорадочные состояния неопределенной причины;
  • изменения на ЭКГ;
  • перенесенный инфаркт миокарда;
  • повышение артериального давления;
  • регулярные спортивные тренировки;
  • подозрение на наличие опухоли сердца;
  • подозрение на аневризму грудного отдела аорты.

Левый желудочек

Основные причины локальных нарушений сократимости миокарда ЛЖ:

  • Острый инфаркт миокарда (ИМ).
  • Постинфарктный кардиосклероз.
  • Преходящая болевая и безболевая ишемия миокарда, в том числе ишемия, индуцированная функциональными нагрузочными тестами.
  • Постоянно действующая ишемия миокарда, еще сохранившего свою жизнеспособность (так называемый «гибернирующий миокард»).
  • Дилатационная и гипертрофическая кардиомиопатии, которые нередко также сопровождаются неравномерным поражением миокарда ЛЖ.
  • Локальные нарушения внутрижелудочковой проводимости (блокада, синдром WPW и др.).
  • Парадоксальные движения МЖП, например при объемной перегрузке ПЖ или блокадах ножек пучка Гиса.
Читайте также:  Герниопластика: современные методы лечения грыж

Правый желудочек

Наиболее частые причины нарушения систолической функции ПЖ:

  • Недостаточность трехстворчатого клапана.
  • Легочное сердце.
  • Стеноз левого атриовентрикулярного отверстия (митральный стеноз).
  • Дефекты межпредсердной перегородки.
  • Врожденные пороки сердца, сопровождающиеся выраженной легочной артериальной гортензией (например, ДМЖП).
  • Недостаточность клапана ЛА.
  • Первичная легочная гипертензия.
  • Острый ИМ правого желудочка.
  • Аритмогенная дисплазия ПЖ и др.

Межжелудочковая перегородка

Увеличение нормальных показателей наблюдается, например, при некоторых пороках сердца.

Правое предсердие

Определяется лишь значение КДО — объема в состоянии покоя. Значение менее 20 мл говорит об уменьшении КДО, показатель больше 100 мл свидетельствует о его увеличении, а КДО более 300 мл бывает при очень значительном увеличении правого предсердия.

Клапаны сердца

Эхокардиографическое исследование клапанного аппарата позволяет выявить:

  • сращение створок клапана;
  • недостаточность того или иного клапана (в том числе признаки регургитации);
  • дисфункцию клапанного аппарата, в частности папиллярный мышц, ведущую к развитию пролабирования створок;
  • наличие вегетации на створках клапанов и другие признаки поражения.

Наличие в полости перикарда 100 мл жидкости говорит о небольшом накоплении, а свыше 500 — о значительном накоплении жидкости, что может приводить к сдавливанию сердца.

Кривая образования и распада (диссоциации) оксигемоглобина

Агентом, гарантирующим быстрое насыщение железосодержащего белка кислородом (образование оксигемоглобина), выступает высокое напряжение (парциальное давление) О2 в легочных альвеолах (порядка 100 мм рт. ст.).

Корреляцию между степенью насыщения красного кровяного пигмента кислородом и парциальным давлением O2 (P O 2) выражают в виде S-образной кривой (сигмоиды), которую называют кривой диссоциации оксигемоглобина.

Свойственная красному кровяному пигменту S-образная (сигмоида) кривая диссоциации оксигемоглобина свидетельствует о том, что контактирование первой молекулы О2 с одним из гемов Hb открывает путь присоединению других молекул элемента остальными тремя гемами. Кривой насыщения железосодержащего белка кислородом принадлежит немалая физиологическая значимость – S-образная конфигурация позволяет крови обогатиться данным газом при изменениях концентрации кислорода в биологической жидкости в довольно обширных интервалах. К примеру, не следует ожидать таких особенных расстройств дыхательной функции крови, как выраженное кислородное голодание (гипоксия), при подъеме на высоту до 3,5 км над уровнем моря или во время перелета на самолете. Хотя P O 2 во вдыхаемом воздухе сильно понизится, концентрация кислорода в крови будет находиться на достаточно высоком уровне, чтобы обеспечить насыщение Hb данным газом. На это указывает и отлогий график формирования и распада оксигемоглобина на верхнем его отрезке (верхний отрезок кривой свидетельствует о течении процесса насыщения О2 красного пигмента крови в легочной паренхиме и находится в пределах 75 – 98%).

Кривая диссоциации оксигемоглобина может быть разделена на 4 отрезка, каждому их которых соответствует определенный период образования оксигемоглобина (зависимость скорости насыщения хромопротеина кислородом от парциального давления газа в крови):

Кривая образования и распада (диссоциации) оксигемоглобина
  • 0 – 10 мм рт. ст. – гемоглобин не спешит насыщаться;
  • 10 – 40 мм рт. ст. – оксигенация резко ускоряется (стремительный подъем кривой), доходя до 75%;
  • 40 – 60 мм рт. ст. – оксигенация заметно замедляется, потихоньку добираясь до 90%;
  • Значения P O 2 пересекают отметку 60 мм рт. ст. – насыщение идет слабо (линия лениво ползет вверх). Однако кривая медленно продолжает стремиться к отметке 100%, но, так и не достигнув ее, останавливается на уровне 96 – 98%. Кстати, и такие показатели насыщения Hb кислородом отмечаются только у молодых и здоровых людей (P O 2 артериальной крови ≈ 95 мм рт. ст., легочных капилляров – ≈ 100 мм рт. ст.). С возрастом дыхательные способности крови снижаются.

Несовпадение парциального давления кислорода артериальной крови и смеси газов в альвеолах легких трактуется:

  1. Некоторыми разногласиями между интенсивностью тока крови и вентилированием разных отделов главного органа дыхания – легких;
  2. Притоком незначительного объема крови из бронхиальных вен в венозные сосуды легких (шунтирование), где, как известно, течет артериальная кровь;
  3. Прибытием доли крови из коронарных вен в левый желудочек сердца посредством тебезиевых вен (вены Тебезия-Вьессена), в которых проходимость возможна в обоих направлениях.
Читайте также:  Рентген-исследование сегментов легких в практике пульмонолога

Между тем, причины, вследствие которых кривая образования и диссоциации оксигемоглобина приобрела сигмоидную форму, пока остаются не до конца выясненными.

Смещение кривой диссоциации оксигемоглобина

Но кривая диссоциации оксигемоглобина, о которой идет речь выше, справедлива, если в организме все нормально. В других ситуациях график может сдвигаться в ту или иную сторону.

В числовом выражении сродство гемоглобина к кислороду обозначается величиной P 50 – напряжение полунасыщения красного пигмента крови кислородом или иными словами: парциальное напряжение О2, при котором 50% Hb пребывает в форме оксигемоглобина (оптимальные условия: рН – 7,4, tº – 37ºC). Нормальные значения этого показателя в артериальной крови приближаются к величине 34,67 гПа (26 мм рт. ст.). Смещение графика вправо указывает на то, что способность красного кровяного пигмента соединяться с кислородом снижается, что, естественно, увеличивает значения P 50. И, наоборот – смещение кривой влево говорит об увеличении сродства этого хромопротеина к кислороду (↓P 50.).

Ходу сигмоиды помогают некоторые факторы, повышающие обогащение крови кислородом и таким образом участвующие в тканевом дыхании, поэтому названные вспомогательными:

  • Повышение водородного показателя (pH) крови (эффект Бора), поскольку способность гемоглобина присоединять кислород связана с водородным показателем (pH) данной биологической среды (гемоглобин представляет одну из четырех буферных систем и влияет на регуляцию кислотно-основного баланса, поддерживая pH на нужном уровне: 7,36 – 7,4). Следовательно, чем выше водородный показатель, тем активнее ведет себя гемоглобин в отношении кислорода и наоборот – снижение pH отнимает возможности хромопротеина присоединять кислород, например: ↓pH до 7,2 заставит график отклоняться вправо (≈ на 15%), pH до 7,6 передвинет кривую диссоциации оксигемоглобина влево (≈ на 15%);
  • Отделение углекислого газа от карбогемоглобина в легких и выход СО2 с выдыхаемым воздухом (эффект Бора-Вериго) на фоне повышения водородного показателя создает условия для жадного насыщения гемоглобина кислородом (образование оксигемоглобина в легких);
  • Возрастание уровня значимого для обмена фосфата – 2,3-дифосфоглицерата (2,3-ДФГ), содержание которого в крови меняется в зависимости от условий протекания обменных процессов;
  • Снижение температуры в легких (в тканях она выше, нежели в легких) и чем ниже упадет tº, тем больше способностей присоединять кислород появляется у железосодержащего белка (при повышении температуры идет обратный эффект).
Смещение кривой диссоциации оксигемоглобина

Уровень красного пигмента в крови, а также его способность присоединять кислород (кривая диссоциации оксигемоглобина) в некоторой степени подвержены возрастным колебаниям. Так, у младенцев, только-только известившим мир о своем появлении первым криком, количество гемоглобина заметно выше, что объясняется присутствием фетального гемоглобина, который, как известно, обладает повышенным сродством к кислороду. Красный пигмент крови стариков, напротив, постепенно снижает способности связывать кислород.

В заключение хочется заметить, что гемоглобин не только имеет сродство к кислороду и довольно легко соединяется с углекислым газом. Кроме физиологических соединений красного кровяного пигмента при определенных условиях возникают связи с другими газами, в частности – с угарным газом (CO) и оксидом азота (NO), причем соединение происходит также непринужденно

Высокое сродство Hb к угарному газу влечет образование карбоксигемоглобина (HHbCO), который препятствует соединению хромопротеина с кислородом, а в результате этого ткани остаются без O2. К чему это может привести – всем известно: при отравлении угарным газом высок риск смертельного исхода, если вовремя не помочь человеку.

При отравлении оксидом азота или парами нитробензола гемоглобин переходит в метгемоглобин (HHbOH) с изменением валентности железа (II → III). Метгемоглобин также не позволяет кислороду соединиться с гемоглобином, в итоге – наступает кислородное голодание тканей, создается угроза жизни организма.

Отхождения от нормы и принципы расшифровки результатов

В результате эхокардиографии можно обнаружить такие патологии развития и функционирования сердечной мышцы и сопутствующие им заболевания:

  • сердечная недостаточность;
  • замедление, ускорение или перебои сердечного ритма (тахикардия, брадикардия);
  • предынфарктное состояние, перенесенный инфаркт;
  • артериальная гипертензия;
  • вегето–сосудистая дистония;
  • воспалительные заболевания: миокардит сердца, эндокардит, экссудативный или констриктивный перикардит;
  • кардиомипатия;
  • признаки стенокардии;
  • пороки сердца.
Читайте также:  Аппендицит у ребенка: как своевременно распознать • ZOJ.KZ

Протокол обследования заполняется специалистом, проводящим УЗИ сердца. Параметры функционирования сердечной мышцы в этом документе указаны в двух значениях – норма и показатели обследуемого. В протоколе могут встретиться сокращения, непонятные пациенту:

  • ММЛЖ – масса левого желудочка;
  • ИММЛЖ – индекс массы;
  • КДР – конечный диастолический размер;
  • ДО – длинная ось;
  • КО – короткая ось;
  • ЛП – левое предсердие;
  • ПП – правое предсердие;
  • ФВ – фракция выброса;
  • МК – митральный клапан;
  • АК – аортальный клапан;
  • ДМ – движение миокарда;
  • ДР – диастолический размер;
  • УО – ударный объем (количество крови, которое за одно сокращение выбрасывает левый желудочек;
  • ТММЖПд – толщина миокарда межжелудочковой перегородки в фазу диастолы;
  • ТММЖПс – то же, в фазу систолы.

Определение массы миокарда рассчитывают, используя цифры, полученные в процессе эхокардиографии. Для точности и объективности оценки измерений их проводят в сочетании режимов, сопоставляя двух- и трехмерные изображения. Данные дополняют результатами допплерметрического исследования и показателями ультразвуковых сканеров, которые способны вывести на экран монитора проекцию сердца в натуральном размере.

Расчет массы миокарда можно осуществить несколькими способами. Предпочтение отдают двум формулам ASE и PC, в которых используют следующие показатели:

  • толщину мышечной перегородки, разделяющей сердечные желудочки;
  • непосредственно толщину задней стенки левой камеры в спокойном состоянии, до момента ее сокращения;
  • полный размер расслабленного левого желудочка.

Трактовки величин, полученных при эхокардиографии, должен рассматривать опытный специалист функциональной диагностики. Оценивая результаты, он отметит, что формула ASE представляет левый желудочек вместе с эндокардом (сердечной оболочкой, выстилающей камеры). Это может вызвать искажение измерения его толщины.

Прогноз для здоровья

Прогноз зависит от того, насколько низкий показатель диагностирован у пациента. При понижении значения до 40-45% риск остановки сердца невелик, около 10-15%. Когда ФВ снижается до 34-39%, то возможность летального исхода находится в пределах 20-25%.

В случае если этот показатель становится еще ниже, то угроза жизни для пациента возрастает по мере уменьшения ФВ.

Полностью избавиться от патологии не представляется возможным, поэтому пациентам с данным диагнозом необходимо постоянно проходить корректирующую терапию, что позволит сохранить жизнедеятельность на долгие годы.

Фракция выброса дает информацию о работоспособности левого желудочка. У мужчин и женщин норма одинаковая (55-70 %), а вот у детей показатель может достигать 70-80 %, что не считается патологией.

Чаще всего встречается низкая фракция. Чтобы поднять показатель, необходимо найти причину патологии и организовать адекватное лечение. Если этого не сделать, пациенту угрожает развитие сердечной недостаточности, летальный исход.

В физиологии сердечнососудистой системы, конечный диастолический объём (КДО)

, это объём крови в правом и/или левом желудочке в конечный момент наполнения (диастолы). Так как КДО связан с растяжением желудочка(ков), КДО часто используется как синоним преднагрузки, то есть длине саркомеров сердечной мышцы перед сокращением (систолой). Увеличение КДО увеличивает преднагрузку на сердце и, через механизм Франка-Старлинга сердца, повышает объём крови, вытолкнутой из желудочка(ов) во время систолы (ударный объём сердца).Конечно-диастолический объем левого желудочка (КДО) – объем полостей левого желудочка в конце диастолы- 110-145 мл

Конечно-систолический объем левого желудочка (КСО)

– объем полости ЛЖ в конце систолы- 40-65 мл Ударный объем- объем крови, изгоняемой в систолу за одно сокращение. УО=КДО-КСО (70-100 мл)

Фракция выброса ЛЖ – отношение УО к КДО. Норма 50 -70 %